Who Needs to Monitor Oxygen Levels at Home in Daily Life

Who Needs to Monitor Oxygen Levels at Home in Daily Life

SpO2

Normally, oxygen saturation (SpO2) means how much oxygen the hemoglobin in your blood is carrying.

Normal blood oxygen saturation in a healthy person is approximately 95-100%. If oxygen levels fall below this level, lung disease may be present. A level below 92% (in the case of chronic obstructive pulmonary disease — COPD, 88%) indicates a serious condition that may require supplemental oxygen or hospital monitoring.

The higher the oxygen saturation in the blood, the better the metabolism of the body. However, it does not mean that the higher is better. Too high will cause cell aging; too low will cause insufficient oxygen supply to the body, accompanied by dizziness, sleepiness, irritability, and other symptoms.

So who will need to monitor this indicator in daily life? Should you really monitor your blood oxygen levels at home? Wellue teams have made the following summary.

1. Patients with COVID-19 including those who have confirmed or suspected COVID-19

A drop in blood oxygen saturation is one of several typical symptoms of coronavirus and a valid indication to distinguish coronavirus from the common cold. Patients with lung infections tend to have decreased blood oxygen saturation, and this also applies to COVID-19. The epidemic is still spreading but the medical system’s support has collapsed, leaving many patients in home isolation. Controlling the infection is a key to prevention and control this epidemic. The epidemic should continue to exist this year, while local outbreaks are likely to occur. Then once you find your blood oxygen saturation suddenly low in daily life, you need to pay enough attention and seek timely medical attention.

Wellue hands over its remote solution. Its Oxylink Remote Oxygen Monitor proves its value in telemedicine.

Remote management of COVID-19, see Wellue’s solution.

Oxylink remote health management of COVID 19

Oxylink™ Remote can track a wearer’s SpO2 and HR, and stream the vital signs data to his/her family members or doctors via Remote Linker, creating a reliable telemetry system.

2. Patients with chronic diseases such as diabetes, heart disease, respiratory disease, sleep apnea etc.

Patients with chronic diseases such as diabetes, heart disease and respiratory diseases, especially the elderly, are characterized by low cure rates, high incidence of complications, and high death rates. They may require long-term care and need to keep good habits to slow down the development and deterioration of the disease. Thus daily monitoring of physical signs and symptoms is particularly important.

In addition to some common self-monitoring indicators such as heart rate, blood pressure and body temperature, with more and more smart wearable devices adding the function of blood oxygen monitoring, blood oxygen monitoring has also become popular. And for patients with chronic diseases, the continuous monitoring of this indicator has become easier. Just using a pulse oximeter to take an instant check is not so helpful. Wellue creates its oxygen monitors for long-term tracking of your SpO2 and pulse rate, such as O2Ring continuous oxygen monitor, Checkme O2 Max Wrist oxygen monitor. By recording these indicators continuously, not only can you better manage your health data outside of the hospital, but you can also go to the hospital for timely follow-up examinations based on the deterioration of the indicators. At the same time, the trend changes of these data are also very important for doctors to diagnose and adjust the treatment plan.

checkme O2 Max oxygen monitor

With extra-long battery run-time of 72 hours (more than 7 full nights) per charge, Checkme™ O2 Max Wrist Oxygen Monitor may well be the ultimate solution for continuous O2 saturation monitoring during sleep. Moreover, it has alarm reminders including audio notifications on the free APP and silent vibration on the device, which means you will get an alert if the too low oxygen level is detected.

3. Exercise enthusiasts

Like chronic disease patients, it is also very necessary to monitor exercisers’ vital signs to adjust the intensity and frequency of exercise. Especially when doing high-intensity exercise, they are easy to have an insufficient oxygen supply. In serious cases, acute ischemia, cardiac arrest, and interruption of cerebral blood flow may be led, which can cause sudden cardiac death and sudden death, as evidenced by the fact that there have been a number of reports of sudden death in sports this year. So it is very important to reasonably grasp the intensity of exercise.

How to Choose the Right Oxygen Monitor for Home Use?

How to Choose the Right Oxygen Monitor for Home Use?

how to choose the right oxygen monitor for home use
A pulse oximeter is commonly known as a device that can measure SpO2 (oxygen saturation of hemoglobin in a patient’s arterial blood) in a non-invasive way. Now the technological advancements have made it possible to either provide continuous monitoring or spot-checking.

Real-time monitoring of blood oxygen levels now allows clinicians and patients to actually diagnose illnesses such as hypoxemia and sleep apnea at an early stage. Thus continuous monitoring of blood oxygen saturation has become vital in personal health management as it presents an indication of whether the lungs are functioning properly.

People who want to monitor their oxygen levels at home may wonder know how to choose the right oxygen monitor. Here are some tips collected by Wellue.

How to Choose the Right Pulse Oximeter

When you are going to choose the suitable home-use continuous oxygen monitor, better to refer to choosing tips as following.

1. Certification check & Review reference

Before paying for your order, you have to remember that accuracy is the most important factor to decide whether to buy medical equipment. The best way to make sure of the accuracy before you actually use the monitor is to check for the certifications and refer to the customer reviews. Someone who has bought and used the product will have their sounds online to phrase or make complaints, which sometimes can help you judge the quality.

Some reliable certifications are provided by a few organizations, such as the FDA and CE. Those organizations will review the quality and standards to assure the accuracy of the medical device.

2. Oxygen monitor type selection

In terms of design, if you do not consider other factors, just choose your favorite type, ring, or wrist, whatever is okay. But if you want to monitor the SpO2 for the whole night, we will strongly recommend you to choose the continuous overnight oxygen monitor rather than the fingertip pulse oximeter. As you know, the fingertip pulse oximeter uses the spot-checking approaches. If you do not have the need to monitor the oxygen saturation for several hours, the cheap fingertip pulse oximeter is more suitable.

3. Price & Features comparison

The price of oxygen monitors ranges from 10USD to 200USD. The general fingertip pulse oximeter is much cheaper and you can find one in pharmacies or online stores. As for the continuous overnight oxygen monitor, the price is slightly higher, as its function is improved well.

In terms of features, you can make your decision about what you need. Some have a bright and clear display; some are water-resistant; some can achieve remote monitoring. Also remember to consider if it is light to carry, comfortable to wear, easy to use, durable and portable.

Recommending the Right Pulse Oximeter – Wellue Continuous Oxygen Monitors

Wellue o2ring pulse oximeter

Some Benefits of Wellue Continuous Overnight Blood Oxygen Saturation Monitor

Continuous oxygen monitoring is a better way to prescribe long-term oxygen therapy.

First, it can monitor one’s oxygen saturation over time, providing more utility for trends over time instead of absolute thresholds.

Second, if your oxygen levels are dangerously low or your abnormal heart rates are detected, it can alert with vibration or audio alarm on the free APP ViHealth, such as O2Ring continuous oxygen monitor and SleepU oxygen monitor, which is particularly helpful for patients with obstructive sleep apnea.

Third, using this product to monitor the blood oxygen saturation actually could offer peace of mind to people with obstructive sleep apnea, chronic respiratory or cardiovascular conditions, or people under anesthesia.

Fourth, it can also help assess the need for supplemental oxygen. For instance, when this is done overnight, a continuous measurement can be graphed and stored on your phone. The graph helps the doctor see if you have enough oxygen in your body when you sleep and ensure the amount of supplemental oxygen.

Fifth, the continuously monitored blood oxygen saturation level will indicate dangerous side effects in people taking drugs that affect breathing or oxygen saturation.

How Pulse Oximeters relate to COVID19 and if it’s truly a must-buy

How Pulse Oximeters relate to COVID19 and if it’s truly a must-buy

The continuing battle with the global spread of the novel COVID-19 has emphasized and revitalized the vital role of innovative tools that could help detect symptoms before the clinical condition worsens. Thus, the COVID-19 pandemic has brought about an influx in demand for home monitoring tools, particularly pulse oximeters, since one of the clinical concerns with acquiring a COVID-19 infection is its respiratory effects. Respiratory function, specifically, oxygenation, can be impaired by severe COVID-19 infection. The virus damages the lung, thereby reducing oxygen intake capacity. With pulse oximetry, important data on respiratory parameters are reflected. It could monitor COVID-19 disease progression by measuring the oxygen saturation (SpO2) in a person’s blood.

How Pulse Oximeters Work: Detection of Blood Oxygen Levels

Although people infected with COVID-19 can manifest with varying symptoms, the most common initial symptoms observed in patients are fever, cough, fatigue, and myalgia. Symptoms are then classified as mild, moderate, and severe. Those with mild symptoms and are otherwise healthy are often sent home to manage their symptoms. Pulse oximeters can be useful for these patients. The home pulse oximetry readings can accurately reflect important clinical insight on respiratory deterioration. The blood oxygen level of a person infected with the novel coronavirus may be lower than average. This condition is known as hypoxia. The more severe the infection, the lower the oxygen saturation reading will be. Some patients unknowingly have decreased blood oxygen levels during the early stages of COVID-19. Their clinical status can immediately deteriorate, and they can eventually manifest with shortness of breath, which leads to higher mortality rates. Having a pulse oximeter can detect low blood oxygen levels before the onset of severe symptoms.  

A pulse oximeter like the Wellue OxySmart™ is designed as a clip that fits on a person’s fingertips or toes. The Wellue O2Ring™, on the other hand, is a ring-like device that the patient can wear. Both devices make use of light-emitting diodes (LEDs) and a light detector. When the oximeter is attached to the fingertip, the LEDs and the light detector capture blood flow from the small vessels. From this, the device can then measure the percentage of oxygen-carrying blood within seconds. The pulse oximeter also has a monitor that displays the SpO2 rate and a pulse wave, representing the pulse rate. It can be used to determine how much oxygen a patient needs and when they may need it.

Not only could pulse oximeters like Wellue OxySmart™ and O2Ring™ Continuous Ring Oximeter record SpO2, but it could also document the corresponding pulse rate, heart rate, perfusion index, and movements of a person. There is merit in knowing these health parameters, especially SpO2. The National Institutes of Health (NIH) recommends oxygen saturation levels of 92–96%. Anything below this range indicates a severe case of COVID-19 infection, which may require urgent hospitalization for immediate oxygen supplementation and critical care. It is where data collected from a Wellue OxySmart™ and O2 Ring™ Continuous Ring Oximeter can be life-saving.

The use of these devices by generally healthy people and patients diagnosed with mild COVID-19 symptoms cannot aid in establishing whether or not there is a need for them to be hospitalized. However, people can monitor their clinical status even in the comforts of their homes since these devices can instantly analyze the user’s condition.

Benefits and Pitfalls of Pulse Oximetry

Pulse oximeters are not foolproof. The method or technique of measurement can affect the oxygen saturation that will be recorded. Improper placement of these devices can inaccurately reflect oxygen levels in the blood. The best reading can be achieved with a strong pulsatile flow from the site of measurement, granted that the wearer has warm hands and is relaxed.

However, both Wellue OxySmart™ and Wellue O2 Ring™ Continuous Ring Oximeter are FDA-approved wearable electronic devices that can monitor oxygenation continuously, remotely, and noninvasively. The data is gathered in real-time. It is then seamlessly uploaded to a mobile, tablet, or computer app, which can be viewed by the wearer and conveniently shared with a health care provider. This feature will eliminate the need of the user to physically go to the hospital or clinic if it’s only for a check-up. With the data from these devices that they can easily muster, they now have the option to talk to health professionals through online consultations and still have an updated and monitored analysis of their current health condition. Doing so could mean having a smoother and easier online consultation experience. Home monitoring of blood oxygen levels can prevent premature and unnecessary visits to the emergency department and simultaneously optimize in‐person health care utilization. Especially during a pandemic, having an at-home device would be the best option to minimize the risk of getting infected.

Wellue O2 Ring™ Continuous Ring Oximeter allows wearers to capture their SpO2 levels overnight while they are sleeping. The ring vibrates to alert the wearer once their blood oxygen levels fall below the optimal range. This can be particularly helpful in monitoring oxygen saturation in COVID-19 patients while they sleep. Heart rate, respiratory rate, and overall sympathetic tone are decreased during sleep. COVID-19 patients who are already critical would not be able to tolerate a fall in sympathetic tone since this can further aggravate hypoxia. The ring oximeter readings can be used to assess oxygenation in patients under critical care. It can help detect early decompensation and subsequently allow healthcare professionals to deploy resuscitative measures.

All in all, pulse oximeter readings may not reveal the severity of the disease process, and patients should, therefore, always seek further medical evaluation if they are experiencing any COVID19 related symptoms. They should not solely rely on these devices to detect medical conditions such as COVID-19, COPD, pneumonia, asthma, and other disease entities with a failure in oxygen supply. Pulse oximeter devices are used mostly for conveniently monitoring the wearer’s current health condition. It is also a great tool to determine the consistency of their health, as well as a warning device that can help the patient be more conscious of their health insights.

References:

  1. Shenoy, N., Luchtel, R. & Gulani, P. Considerations for target oxygen saturation in COVID-19 patients: are we under-shooting?. BMC Med 18, 260 (2020). https://doi.org/10.1186/s12916-020-01735-2
  • Shah, S., Majmudar, K., Stein, A., Gupta, N., Suppes, S., Karamanis, M., … Patte, C. (2020). Novel use of home pulse oximetry monitoring in COVID‐19 patients discharged from the emergency department identifies need for hospitalization. Academic Emergency Medicine. doi:10.1111/acem.14053
What is COPD and How Can Pulse Oximeters Help with It?

What is COPD and How Can Pulse Oximeters Help with It?

The levels of oxygen in the blood reflect the amount being carried by the red blood cells and an indicator of how well our respiratory system is ensuring proper gas exchange. Our bodies have specific mechanisms that maintain the adequate concentrations of gases and substances needed for everyday life.

The respiratory system safeguards effective gas exchange

The respiratory system plays an important role in human physiology by preserving the efficient exchange of gas. When a person inhales, the air enters the nostrils and upper airways, where it is filtered and humidified. Water vapor is added to the inhaled air, and it is slowly channeled into the lower respiratory tract and into thin-walled sacs called alveoli.

The alveoli are located adjacent to tiny blood vessels called capillaries. It is the apposition of these structures that allow for the diffusion of gases between the thin-walled membranes. Oxygen from the inspired air is dispersed into the blood, while carbon dioxide is exchanged from the blood into the alveolar air. The dissolved oxygen in the blood then becomes distributed to the rest of the body.

Oxygen is vital for normal body function

One of the main functions of oxygen in the body is the production of energy derived from food breakdown in a process called cellular respiration. Food is composed of basic units known as carbohydrates, fats, and proteins. Energy is produced when the cell breaks down these basic food units with the help of oxygen-derived from the gas exchange system. The energy produced is usually stored in the chemical bonds of molecules called Adenosine Triphosphate or ATP and can be used to perform all types of work, from simple tasks like the involuntary digestion of food to more complex ones such as exercising or dancing.

Different types of respiratory system illnesses

Three main types of diseases can affect the respiratory system. The first type deals with diseases which can affect the airways and includes any form of obstruction. The second type involves those causing damage to lung tissue. Lastly, the third type includes those that alter circulation or the blood vessels that supply the lung.

Internationally, one of the common diseases affecting the lungs is the Chronic Obstructive Pulmonary Disease (also known as COPD).

What is COPD?

COPD is characterized by persistent airflow reduction and presents with progressively worsening breathlessness, from the difficulty of breathing upon exertion to eventual shortness of breath even at rest. It is life-threatening and estimated to be largely underdiagnosed.

The disease develops slowly and usually becomes evident by 40 to 50 years of age. Along with breathlessness, other symptoms that may accompany the illness include chronic cough (a cough lasting more than eight weeks for adults) and excess production of sputum (the mucous secretion from the lower respiratory tract).

COPD can cause difficulty and disability in performing daily tasks such as going up a flight of stairs, carrying luggage, and even simple activities such as taking a bath. As the condition progresses, afflicted patients may experience short episodes of worsening symptoms or exacerbations, including increased breathlessness, coughing, and sputum production.

The primary cause of COPD

Among several risk factors causing this illness, tobacco smoke has been identified as the primary cause, including passive exposure or secondhand smoke. Other determinants that may influence the risk of acquiring COPD include air pollution (indoor and outdoor), occupational specks of dust and chemicals, and a history of frequent lower respiratory infections during childhood.

Previously, the disease was more common in men. However, recently, trends have shown that it now affects both males and females equally due to increased levels of smoking among women and the higher exposure to indoor air pollution such as that which may be inhaled during cooking and heating.

COPD is initially suspected in those presenting with the previously mentioned symptoms of cough, excess sputum production, and worsening breathlessness. A diagnostic breathing test called spirometry can be performed on suspected patients. It involves measuring how much and how quickly air can be exhaled in one forced breath.

COPD can lead to decreased oxygen saturation of the blood

Because of the reduction in airflow, patients with this condition often have lower than average oxygen saturation of the blood. For normal individuals, the average oxygen saturation should be at 95-100%. For patients with COPD, oxygen saturation falls to about 88-92%. 3 This is below “normal” but can be considered “acceptable” because of the presence of the condition.

With this being said, it is therefore essential to have oxygen levels regularly monitored. The amount of oxygen in the blood may be measured in two ways.

Ways to measure oxygen in the blood

First, oxygen may be measured with an arterial blood gas (ABG) determination. It is a test where blood is taken from an artery (usually at the wrist) rather than from a vein. Arteries are much more deep-seated than veins and more closely associated with nerves. Thus the ABG can be quite a painful procedure. However, it is most accurate and provides oxygen level measurement in partial pressure (PaO2).

Another less painful and more convenient method is using a device called the pulse oximeter like the Wellue O2Ring. It estimates the amount of oxygen in the blood by sending infrared light into the capillaries of the fingers, toes, or earlobes and measuring the amount reflected, which is proportional to the saturation of gases. Devices like the Wellue O2Ring can track the oxygen levels every second, and it has a Low Oxygen Alarm feature. This alarm would come in handy since it will vibrate when the oxygen level is low to call the user’s attention and notify them. Having this type of device can also record and create a detailed report and analysis of the wearer’s health insights. A pulse oximeter ring like the Wellue O2Ring can also provide maximum comfort that even while sleeping, they will have no problem using the said device. By the next day, the patient can check and monitor their health overnight through an app on their phone or through a computer.

References:

  1. World Health Organization: WHO. Chronic obstructive pulmonary disease (COPD). Who.int. Published December 2017. Accessed November 13, 2020. https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd)
Asthma in Children: How Can Pulse Oximetry Helps

Asthma in Children: How Can Pulse Oximetry Helps

For children, asthma can be tough. Having smaller airways compared to their adult counterparts can cause some serious issues. By testing your child’s blood oxygen levels, you can help to manage their asthma. One way is through pulse oximetry. Let’s look at what it is and how you can monitor your kid’s oxygen levels.

What is it?

This is a quick, painless test that measures the level of oxygen saturation, or blood oxygen levels. It tends to be a clip device that is attached to a certain part of your body, with one area being your finger. It can measure how far your body is carrying oxygen.

Pulse oximetry is used to monitor the health of those who have breathing issues such as COPD, anemia, heart issues, asthma, and other issues.

In the case of a child with asthma, pulse oximetry can tell if the child needs help breathing. It can also help monitor your child after they take some medication. This can ensure you that the medicine is working. If the levels change for the better, great. If they don’t change, your child’s doctor may need to adjust the medication.

Asthma In Children

Childhood asthma can be quite serious. This is prevalent in kids who are 5-11, and it can lead to coughing, wheezing, and trouble breathing. It can lead to a disinterest in physical activities as well. For some kids with asthma, it can be mild for the most part, but then start acting up in a severe episode.

It’s not always a child who just wheezes a little; it can be severe. In some cases, the child may be unable to speak, and there may be trouble breathing. In some cases, something more than a quick relief inhaler may be needed. If your child has any issues, taking them to a doctor as soon as possible is important.

Pulse Oximeters at Home

Monitoring your child’s oxygen is important, but until recent times, only a doctor could allow you to do so. However, these days, there are oxygen readers you can use on your child at home to monitor their oxygen levels.

If the reading is 95 percent or higher, it is a healthy reading. If there’s anything below that, there may be an issue in your child. Sometimes, the levels can drop a little below average, but if that’s temporary and happens only occasionally, that should not be an issue.

One way you can read your child’s oxygen levels is through an at-home oximeter. Let’s look at two of them and you can decide which is better.

Two Oximeters for Your Child

If you are shopping for an oximeter for your kid, there are several options for you to choose from. Let’s look at a couple.

Traditional Kids’ Oximeter

You can find quite a few oximeters that are like this. They are good if you want to read a child’s oxygen levels. Whether it’s before bed or before doing something that requires intense physical activity, a kids’ oximeter can help you.

With a traditional oximeter, they are a little limited. They clamp on your child’s fingers, which doesn’t hurt usually, but it can be problematic if your child is sensitive. Not to mention, some of them may have inaccurate readings. This especially applies if your child is antsy, which most kids are.

Finally, they tend to use AA or AAA batteries, which can drain quickly. If you need to measure your child’s levels and you don’t have any, that can be an issue. One consideration you should make is to purchase the

Wellue O2 Ring for Kids

For some people, the traditional O2 meter just doesn’t cut it. For one thing, maybe your child’s oxygen levels tend to dip under a certain level every night. For another thing, you may want something more accurate.

One oximeter you can check out is the Wellue O2 Ring, or KidsO2. This is an oximeter that is a ring, meaning it goes over your child’s thumb and stays there until it’s taken off. This ring is meant for kids up to 10 years old, which is the most vulnerable age range for asthma issues.

One feature of the KidsO2 is that it will alert you and your child when the levels are lower than usual. It will send an audio reminder through its app, or on the device itself. You can adjust how loud the alarm is, too.

Unlike other oximeters that tend to be uncomfortable, the KidsO2 Oximeter is quite comfy. For your child, it’ll feel like they’re wearing nothing at all. Kids can be picky about these things, so it’s nice to see an oximeter that works for them.

While this oximeter works with or without a phone, there is an app that you can use to track stats. This app works for your phone, PC, or Mac. It is easy for you to share with your doctor when you are using it. If you don’t want that, the O2 ring does have a built-in memory so you don’t have to sync it to any app. Sometimes, simple is better.

Finally, we should mention that this ring has a rechargeable battery. Some oximeters use traditional AA or AAA batteries, but this has a rechargeable battery built into it that provides up to 16 hours of battery life.

Conclusion

If your child has asthma, monitoring their oxygen levels through an oximeter is important for their health and for your peace of mind. Should the levels drop continuously, it can lead to various health issues that can sometimes have long-term consequences for your kid.

Oximeters can make it easy for you to monitor your child’s oxygen levels and seek assistance should their levels drop below average.

With that said, a home oxygen meter is no substitute to talking to a doctor about any health concerns you may have. Here’s hoping you and your child have a happy and healthy year.